Both databases predicted more than 100 pathways using TX16 genomi

Both databases predicted more than 100 pathways using TX16 genomic information. E. faecium exhibits major genomic differences in the genes involved in energy metabolism compared to that of other facultative anaerobic bacteria. However, like other species in the Lactobacillaceae order, genes for typical aerobic energy (ATP) generation buy Etomoxir through the TCA

cycle and electron transport chain do not exist, i.e., genes encoding complex I (NADH dehydrogenase), II (succinate dehydrogenase,), III (cytochrome bc 1 complex), and IV (cytochrome c oxidase). When we compared the metabolic pathways of TX16 to those of E. faecalis V583 using the KEGG database, all 82 metabolic pathways of E. faecalis were also predicted in TX16. Indeed, more diverse metabolic activities were observed in TX16 (Additional file 10: Table S7 and Additional file 11: Table S8). Additional files 10: Table S7 and Additional files 11: Table S8 show lists of enzymes that only exist in E. faecium TX16 or E. faecalis V583

when KEGG enzymes from both strains were compared. Many of these enzymes were also described by van Schaik et al. who compared 7 European strains (also included in this study) to E. faecalis V583. They found 70 COGs present in their E. faecium genomes lacking in V583, whereas we found 176 predicted enzymes present in TX16 lacking in E. faecalis V583 according to KEGG analysis. Additionally, they found 140 COGs specific for E. faecalis V583, compared to the European strains, whereas we found only 112 enzymes specific to V583 when compared to TX16 according to KEGG analysis [32]. Plasmids Alignment of ORFs from Batimastat clinical trial the three plasmids of TX16 to the ORFs

from the other 21 E. faecium genomes by BLASTP showed that all strains shared some ORFs that are similar to the ORFs of the three E. faecium TX16 plasmids (pDO1, pDO2 and pDO3), but none of them have more than 90% of the ORFs from any of the plasmids. It is likely that some strains may have similar but not identical plasmids as TX16, but identification of plasmids in other strains is difficult since those genomes are draft sequences. Alignment of ORFs of the three TX16 plasmids Aspartate to 22 complete E. faecium Selleckchem SBI-0206965 plasmid sequences available in NCBI using TBLASTN with 90% identity and 50% match length cutoffs showed that pDO1 is most similar to plasmid pM7M2, a 19.5 kb plasmid which shared 27 ORFs of the 43 ORFs (62.8%) from pDO1, and that pDO2 is somewhat similar to plasmids pRUM and pS177 with 44.7% and 41.2% match to pDO2 ORFs respectively. TX16 plasmid pDO3 does not seem to be similar to any completely sequenced E. faecium plasmids but has similarity to the partially sequenced E. faecium large plasmid pLG1, Both pDO3 and pLG1plasmids harbor the hyaluronidase gene (hyl Efm ), The hyl Efm gene was also found in HA strains 1,230,933, 1,231,410, 1,231,502, C68, TC6 and U0317. Discussion TX16 was the first E.

No related posts.

Comments are closed.