“The E1A gene of species C human adenovirus is an intensel


“The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in selleck chemical cell proliferation and about the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the unexpected discovery that E1A also suppresses cell transformation and

oncogenesis. Here, I review our current understanding of the transforming and tumor-suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor-suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed.”
“The tetrameric green fluorescent protein AsGFP(499) from the sea anemone Anemonia sulcata was converted into a dimeric and monomeric protein by site-directed Afatinib mutagenesis. The

protein was engineered without prior knowledge of its crystal structure based on a sequence alignment of multiple proteins belonging to the GFP-family. Crucial residues for oligomerisation of AsGFP(499) were predicted and selected for mutation. By introduction of a single site mutation (S103K) the A/B subunit was disrupted whereas two substitutions were necessary to separate the A/C subunit (T159K/F173E). This method can be applied as a general predictive method for designing monomeric proteins from multimeric fluorescent proteins. The maturation temperature was optimised to 37 degrees C by a combination of Site-directed

and random mutagenesis. In cell-based assays, the NFATc1A (nuclear factor of activated T-cells, subtype 1, isoform A)-AsGFP(499) chimera formed massive cytoplasmic aggregates in HeLa cells, which prevented the shuttling of NFATc1A into the nucleus and consequentially its transcriptional activity. In contrast, the cells expressing the NFATc1A in fusion with our engineered dimeric and monomeric fluorescent mutants were homogeneously distributed throughout the cytoplasm, making these stable cell lines functional in both translocation and transcriptonal assays. This new dual cellular assay will allow Oxalosuccinic acid the screening and discovery of new drugs that target NFAT cellular processes.”
“The pathophysiologic basis of hemifacial spasm is abnormal cross-transmission between facial nerve fibers. The author hypothesized that the demyelinated facial nerve fibers were connected with the sympathetic nerve fibers on the offending artery wall, and thus the latter function as a bridge in the cross-transmission circuit. This hypothesis was tested using a rat model of hemifacial spasm. A facial muscle response was recorded while the offending artery wall was electrically stimulated.

No related posts.

Comments are closed.