Although the reasons for the discrepancy between the two studies
are unknown, there might be several factors responsible. AR-13324 clinical trial For example, the timing for assessment of clinical remission was different: during the first 2 years in Tatematsu’s study and at 1 year after the intervention in our study. Furthermore, the fact that the incidence of the endpoint in our patients achieving clinical remission at 1 year after the therapy was not significantly different from that in those without clinical remission (4.1 vs. 12.0 %, respectively, p > 0.2) may have affected the results shown in Table 3. Our retrospective study has several limitations. First, we did not include control patients who were followed by supportive therapy alone. Second, the study population and statistical power were small, BMS202 mouse and the observation period was relatively short to evaluate the outcome in IgAN, leading to the small number of outcomes. Since a limited number of outcomes would generally restrict the number of explanatory variables in multivariate models, we additionally tested the Cox–hazard model for the outcome with two explanatory variables: UPE at 1 year <0.4 g/day and propensity score. The propensity model for UPE at 1 year <0.4 g/day was constructed with the baseline characteristics or pathological parameters.
After adjusting the propensity score, we also found the predictive power of UPE at 1 year <0.4 g/day for the outcome (data not shown), suggesting PIK3C2G the consistency of the significance of UPE at 1 year <0.4 g/day. Nevertheless, the value of UPE at 1 year <0.4 g/day as a favorable predictor should be ascertained in other studies with longer observation periods and a larger number of outcomes. Third, the role of recurrent proteinuria after 1 year on the progression of IgAN should be examined, since clinical remission was not associated with the endpoint in this study. In conclusion, the achievement of proteinuria <0.4 g/day at 1 year after 6 months of steroid therapy is an optimal goal for achieving a subsequent favorable renal survival, independent of the baseline renal function or renal pathological
changes. Further investigations of the impact of recurrence during follow-up on the endpoint are now in progress. Acknowledgments We are grateful to Mrs. Tomoko Hayakawa for technical assistance. This study was supported in part by a Grant-in-Aid for Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan. Conflict of interest None. Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Selleck Vadimezan electronic supplementary material Below is the link to the electronic supplementary material. Supplementary material (PPTX 112 kb) References 1.
No related posts.