2 3 Treatments In accordance with a two-way randomized crossover

2.3 Treatments In accordance with a two-way randomized crossover study design, participants were given two 5-day treatments (days 1–5 of each crossover phase; Fig. 1) with a once-daily oral contraceptive, once as monotherapy (treatment A) and once with once-daily prucalopride on days 1–6 of the treatment phase (treatment B). The washout

period between the two contraceptive treatments was 7 ± 2 days. The stage of the patient’s menstrual cycle was not taken into account in the timings of these treatments. The oral contraceptive Trinovum® (ethinylestradiol 0.035 mg and norethisterone 1 mg; Janssen-Cilag Ltd) was used; prucalopride was administered as 2 mg film-coated tablets containing prucalopride Doramapimod mouse succinate, equivalent to 2.0 mg prucalopride base. Fig. 1 Overview of the trial design. OC oral contraceptive The oral contraceptive dose was taken at 0800 hours. For the combination treatment, prucalopride was administered immediately before the oral contraceptive. The drugs were taken with a total of 200 mL of non-carbonated

water. On days 1 and 5 of each treatment period, the study medication was administered in the clinic following an overnight fast of at least 10 hours, and participants were not permitted to eat or drink until 2 hours TPX-0005 concentration after receiving the medication, at which time they received a standard breakfast. On all other days, participants took the study treatments either

at the clinic (days 2 and 6) or at home (days 3 and 4) 30 minutes before breakfast. Compliance was LBH589 purchase assessed by investigator supervision of dosing (except on days 3 and 4) and daily diary entries. During the study, participants were not permitted to take medication other than the study drugs, with the exception of as-needed Selleck Gefitinib paracetamol/acetaminophen (up to a maximum of three 500 mg tablets per day, and no more than 3 g during the study). 2.4 Pharmacokinetic Assessments Serial blood samples for the determination of ethinylestradiol and norethisterone concentrations in plasma were taken on day 1 pre-dose and then at 1, 2, 3, 4, 6, 8, 10, 12, and 24 hours post-dose, and on day 5 pre-dose and then at 1, 2, 3, 4, 6, 8, 10, 12, 24, 36, and 48 hours post-dose. Participants receiving treatment B had serial blood samples collected for the determination of plasma concentrations of prucalopride on days 1 and 5 pre-dose and then at 3 hours post-dose, and on day 6 pre-dose and then at 24 hours post-dose. No pharmacokinetic parameters were calculated for prucalopride. 2.4.1 Assay Validation Plasma samples were analyzed for prucalopride, ethinylestradiol, and norethisterone, using validated liquid chromatography–tandem mass spectrometry (LC–MS/MS) methods.

Energy Environ Sci 2011, 4:2546 CrossRef 12 Ficcadenti M, Pinto

Energy Environ Sci 2011, 4:2546.CrossRef 12. Ficcadenti M, Pinto N, Morresi L, D’Amico F, Gunnella R, Murri R, Tucci M, Mittiga A, Serenelli L, Izzi M, Falconieri M, Sytchkova AK, Grilli ML, Pirozzi L: Si quantum dots for solar cell fabrication. EPZ5676 chemical structure Mater Sci Eng B 2009, 159–160:66.CrossRef 13. Rezgui B, Sibai A, Nychyporuk T, Lemiti M, Brémond G: Photoluminescence and optical absorption properties of silicon quantum dots embedded in Si-rich silicon nitride matrices. J Lunimescence 2009, 129:1744.CrossRef 14. Kurokawa Y, Miyajima S, Yamada A, Konagai M: Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn J Appl Phys Part 2 2006, 45:L1064.CrossRef 15. Song D, Cho E-C,

Conibeer G, Huang C, Flynn C, Green MA: Structural characterization of annealed multilayers targeting formation of Si nanocrystals in a SiC matrix. J Appl Phys 2008, 103:083544.CrossRef 16. Song D, Cho E-C, Cho Y-H, Conibeer G, Huang Y, Huang S, Green MA: Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. Thin Solid Films 2008, 516:3824.CrossRef 17. Moon JH, Kim HJ, Lee JC, Cho JS, Park SH OB, Cho EC, Yoon KH, Song J: Silicon quantum dots thin films and superlattice PRIMA-1MET order in SiC matrix by co-sputtering of silicon and

carbon. In Proceedings of the 34th IEEE Photovoltaic Specialist Conference. Philadelphia; 2009:253. 18. Di D, Perez-Wurfl I, Conibeer G, Green MA: Formation and photoluminescence of Si quantum dots in SiO Atezolizumab datasheet 2 /Si 3 N 4 hybrid matrix for all-Si tandem solar cells. Sol Energy Mater Sol Cells 2010, 94:2238.CrossRef 19. Ding K, Aeberhard U, Astakhov O, Köhler F, Beyer W, Finger F, Carius R, Rau U: Silicon quantum dot formation in SiC/SiO x hetero-superlattice. Energy Procedia 2011, 10:249.CrossRef 20. Perez-Wurfl I, Ma L, Lin D, Hao X, Green MA, Conibeer G: Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Sol Energy Mater Sol Cells 2012, 100:65.CrossRef 21. Kurokawa Y, Yamada S, Miyajima S, Yamada A, Konagai M: Effects of oxygen addition on CB-839 clinical trial electrical properties of silicon quantum dots/amorphous silicon carbide

superlattice. Curr Appl Phys 2010, 10:S435.CrossRef 22. Bohm D: A suggested interpretation of the quantum theory of “hidden” variables. I. Phys Rev 1952, 85:166.CrossRef 23. Bohm D: A suggested interpretation of the quantum theory of “hidden” variables. II. Phys Rev 1952, 85:180.CrossRef 24. Iannaccone G, Curatola G, Fiori G: Effective Bohm quantum potential for device simulators based on drift-diffusion and energy transport. In International Conference on Simulation of Semiconductor Processes and Devices: 2004, Munich. Edited by: Wachutka G, Schrag G. New York: Springer; 2004:275.CrossRef 25. Giacomini R, Martino AM: Trapezoidal cross-sectional influence on FinFET threshold voltage and corner effects. J Electrochem Soc 2008, 155:H213.CrossRef 26.

Among the eight bonding configurations of hydrides, the MSM corre

Among the eight bonding configurations of hydrides, the MSM corresponding to the bonding configuration of the hydrides in the grain boundaries is the major mode that determines the mechanism of hydrogen’s influence on oxygen impurities.

We show in Figure  5b the integrated intensity of the MSM and the bonded oxygen content C O for all the samples with R H = 97.5% to 99.2%. It is clear that the integrated intensity of the MSM decreases with R H increasing from 97.5% to 98.6% and then increases when further increasing R H from 98.6% to 99.2%. As also shown in Figure  5b, C O has an inverse evolution compared with the integrated intensity of the MSM, illustrating that the MSM is closely related to the oxygen impurities. H atoms and ions incorporate the silicon dangling bonds along the platelet-like configuration of the amorphous-crystalline interface, that is, grain boundaries, buy APR-246 and form the hydride corresponding to the MSM. These hydrides located in grain boundaries can effectively passivate the nc-Si:H films by preventing the oxygen incursions from inducing the increase of dangling bonds (Pb center defects) Selleck Alpelisib [10]. And this

inverse correlation between the integrated intensity of the MSM and C O further proves that the oxygen impurities mainly reside at the grain boundaries of the nc-Si:H films. Based on the above results and analysis, we can hereby draw a clear physical picture of the structure evolution mechanism and the effect of the hydrogen behavior on the structure as well as the oxygen impurities in the growth process of the nc-Si:H thin film. The growth of the nc-Si:H thin film is the overall effect of two competing processes: the formation of radicals and the etching of deposition. These two processes are significantly influenced by the proportions of the impinging SiH x radicals and atomic hydrogen ions, which vary with different hydrogen dilutions. During the initial stage, increasing R H from

97.5% to 98.6% led to the decrease of the density of the SiH x radicals, which together why with the H etching effect resulted in the decrease of the growth rate. Considering the high RF power density applied on the depositing substrate, the ion bombardment effect [19] should be taken into account. The ion bombardment effect of the increasing H species on the SiH x radicals during the growth process reduced the surface diffusion length of film precursors, and these precursors could not reach their selleck chemicals llc favorable growing sites, leading to the formation of more microvoids with amorphous components in the nc-Si:H film. These subsequently formed microvoids induced larger areas of internal surfaces with dangling bonds and weaker Si-Si bonds in the growing film.

The terminal O-polysaccharide

The terminal O-polysaccharide LY294002 in vivo structures vary greatly among Shigella, thereby giving rise to the immunological specificity that has resulted in distinct serotypes. Although attenuated Shigella strains expressing genetically engineered O-antigens have been tested as vaccine candidates, an effective vaccine against Shigella remains elusive [2], possibly due to the diversity of the O-antigens. Comprehensive proteomic profiling has the potential to identify novel virulence factors in Shigella that could form potential vaccine or therapeutic targets. Proteomic surveys of Shigella have mainly focused on S. flexneri, which causes

endemic shigellosis. Extensive 2D-LC-MS/MS-based profiling of the S. flexneri membrane proteome by Wei et al. resulted in the identification of more than 600 S. flexneri proteins including ca. 200 integral and outer membrane proteins [11]. Immunoproteome buy CUDC-907 analyses of S. flexneri identified several membrane proteins as being antigenic including OmpA, IpaD, Spa33, TolC and YaeT [12, 13]. The S. dysenteriae strain Sd197 was the first S. dysenteriae genome to be sequenced [14], and included sequences of the chromosome, a large virulence-associated CP690550 plasmid (pSD1_197) and a small plasmid (pSD197_Spa). This annotated SD1 genome was exploited

in a comprehensive proteomic survey of S. dysenteriae strain Sd1617 via 2D gel electrophoresis which resulted in the identification of 1061 distinct gene products [15]. Immunoproteome analysis of SD1 Sd1617 identified seven proteins including type III secretion system effectors OspC2 and IpaB as antigens. In this report, a quantitative global proteomic analysis of SD1 cells grown to stationary phase in culture (in vitro) vs. SD1 cells isolated from mammalian

host environment (in vivo) was performed using 2D-LC-MS/MS and APEX, a label-free computationally modified spectral counting method [16]. Data from the SD1 in vitro and in vivo proteomes was analyzed for differential protein expression in the context of virulence and survival Nintedanib (BIBF 1120) in the host. Methods Materials and reagents All reagents for protein extraction from cell lysates and protein analysis by mass spectrometry (MS) were used as previously described [15, 17]. RNase, DNase I (bovine pancreas), triethyl ammonium bicarbonate (TAB) buffer used for tryptic digestion, TCEP (Tris(2-carboxyethyl)phosphine) used as a reducing agent and the bicinchoninic acid (BCA) protein assay kit to estimate protein concentrations were purchased from Sigma-Aldrich (St. Louis, MO). The alkylating agent MMTS (methyl methanethiosulfonate) was purchased from Pierce (Rockford, IL). Sequencing grade porcine trypsin was obtained from Promega (Madison, WI). Triton X-100 was purchased from Calbiochem (LaJolla, CA). SDS-PAGE was performed according to instructions from Invitrogen.

Surg Endosc 2009, 23:16–23 PubMed 27 Agresta F, Ciardo LF, Mazza

Surg Endosc 2009, 23:16–23.PubMed 27. Agresta F, Ciardo LF, Mazzarolo G, Michelet I, Orsi

G, Trentin G, Bedin N: Peritonitis: laparoscopic approach. World J Emerg Surg 2006,24(1):9. 28. Warren O, Kinross J, Paraskeva P, Darzi A: Emergency selleckchem laparoscopy – current best practice. World World J Emerg Surg 2006,31(1):24. 29. Golash V, Willson PD: Early laparoscopy as a routine procedure in the management of acute abdominal pain: A review of 1,320 patients. Surg Endosc 2005,19(7):882–885.PubMed 30. Reiertsen O, Rosseland AR, Hoivik B, Solheim K: Laparoscopy in patients admitted for acute abdominal pain. Acta Chir Scand 1985,151(6):521–524.PubMed 31. Temozolomide nmr Majewski WD: Long-term outcome, adhesions, and quality of life after laparoscopic and open

surgical therapies for acute abdomen: learn more Follow-up of a prospective trial. Surg Endosc 2005,19(1):81–90.PubMed 32. Azzarello G, Lanteri R, Rapisarda C, Santangelo M, Racalbuto A, Minutolo V, Di Cataldo A, Licata A: Ultrasound-guided percutaneous treatment of abdominal collections. Chir Ital 2009,61(3):337–340.PubMed 33. Gazelle GS, Mueller PR: Abdominal abscess: Imaging and intervention. Radiol Clin North Am 1994, 32:913–932.PubMed 34. VanSonnenberg E, Ferrucci JT, Mueller PR, Wittenberg J, Simeone JF: Percutaneous drainage of abscesses and fluid collections: Technique, results, and applications. Radiology 1982, 142:1–10.PubMed 35. Bouali K, Magotteaux P, Jadot A, Saive C, Lombard R, Weerts J, Dallemagne B, Jehaes

C, Delforge M, Fontaine F: Percutaneous catheter drainage of abdominal abscess after abdominal surgery: Results in 121 cases. J Belg Radiol 1993, 76:11–14.PubMed 36. VanSonnenberg E, Wing VW, Casola G, Coons HG, Nakamoto SK, Mueller PR, Ferrucci JT Jr, Halasz NA, Simeone JF: Temporizing effect of percutaneous drainage of complicated abscesses in critically ill patients. Am J Roentgenol 1984, 142:821–826. 37. Bufalari A, Giustozzi G, Moggi PJ34 HCl L: Postoperative intra-abdominal abscesses: Percutaneous versus surgical treatment. Acta Chir Belg 1996,96(5):197–200.PubMed 38. VanSonnenberg E, Mueller PR, Ferrucci JT Jr: Percutaneous drainage of 250 abdominal abscesses and fluid collections. I. Results, failures, and complications. Radiology 1984, 151:337–341.PubMed 39. Jaffe TA, Nelson RC, DeLong D, Paulson EK: Practice Patterns in Percutaneous Image-guided Intra-abdominal Abscess Drainage: Survey of Academic and Private Practice Centres. Radiology 2004,233(3):750–6.PubMed 40. Lang EK, Springer RM, Glorioso LW, Cammarata CA: Abdominal abscess drainage under radiologic guidance: Causes of failure. Radiology 1986, 159:329–336.PubMed 41. Mason RJ: Surgery for appendicitis: is it necessary? Surg Infect (Larchmt) 2008,9(4):481–488. 42. Eriksson S, Granström L: Randomized controlled trial of appendicectomy versus antibiotic therapy for acute appendicitis. Br J Surg 1995,82(2):166–169.PubMed 43.

2008c) Thus, non-line operators could be regarded as part-time <

2008c). Thus, non-line operators could be regarded as part-time Selleck CA4P exposed to pollution emitted from the production. The JEM was constructed as the geometric mean of total dust exposure in each job category in each smelter (Foreland et al. 2008; Johnsen et al. 2008a). Dust from the working atmosphere was collected by personal samplers during the study period. Each

employee was allocated to the dust exposure for the corresponding job category the previous year. If an employee changed job category during the year, a time-weighted average of the geometric mean was used. These estimates indicated that the qualitative job classification differentiated well regarding individual exposure to dust. Information of job category, and thereby qualitative as well as dust exposure was updated at each examination. The distribution of dust exposure in tertiles by production is shown in Table 2. Table 2 Range of dust exposure (geometric mean, mg/m3) in each tertile by production   1 tertile 2 tertile 3 tertile FeSi, Si-metal 0–1.0 1.1–3.1 3.2–12.6 FeMn, SiMn, FeCr 0–0.7 0.8–1.8 1.9–9.9 SiC 0–0.7 0.8–1.9 2.0–11.3 FeSi, Si-metal ferrosilicon

alloys, silicon metal, FeMn ferromanganese, SiMn silicon manganese, FeCr ferrochromium, SiC silicon carbide Subjects who had their last examination 18 months or more before the closure of the study were regarded as dropouts (Soyseth et al. see more 2008). The study was approved by the Regional ethics committee. Statistical analyses Since the outcome variable was count variable, we assumed a Poisson distribution.

The data were analysed in two steps. very First, we compared the mean and variance of symptom score in each category of the covariates. Since the outcome was a count variable, multivariable Poisson regression models were fitted to the data, both to the baseline data and the follow-up data. The latter data set was analysed using generalised linear mixed model (GLMM) (Fitzmaurice 2004). This method allows data to be unbalanced, i.e., the individuals may have unequal number of follow-up and time spacing between observations. The models were checked for overdispersion (Fitzmaurice 2004). Overdispersion may cause major find more concerns using Poisson regression, as it inflates type I error. In the cross-sectional analysis, we tried to overcome the problem of overdispersion using a multiplicative overdispersion factor. This factor estimates an overdispersion scalar to the variance function. In the longitudinal analyses, we investigated both the effect of using random intercept and a multiplicative overdispersion parameter available in SAS PROC GLIMMIX. In all these multivariable models, we used the same covariates in the cross-sectional logistic model of the data at baseline, i.e., gender, smoking habits, job categories and previous exposure. Age was entered as the sum of age at baseline and time in study. Additionally, dropouts were included as a covariate.

Electron

Mater Lett 2013, 9:837–839 CrossRef 7 Dreyer DR

Electron

Mater Lett 2013, 9:837–839.CrossRef 7. Dreyer DR, Park S, Bielawski CW, Ruoff RS: The chemistry of graphene oxide. Chem Soc Rev 2010, 39:228–240.CrossRef 8. Dang TT, Pham VH, Vu BK, Hur SH, Shin EW, Kim EJ, Chung JS: Clean and effective catalytic reduction of graphene oxide using atomic hydrogen spillover on Pt/γ-Al 2 O 3 catalyst. Mater Lett 2012, 86:161–164.CrossRef 9. Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS: Chemical functionalization of graphene sheets by solvothermal reduction Selleck PF-6463922 of a graphene oxide suspension in N-methyl-2-pyrrolidone. J Mater Chem 2011, 21:3371–3377.CrossRef 10. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS: Colloidal suspensions of highly reduced graphene oxide in a wide variety of Wortmannin cell line organic solvents. Nano Lett 2009, 9:1593–1597.CrossRef 11. Heo C, Moon H-G, Yoon CS, Chang J-H: ABS nanocomposite films based MS-275 mouse on functionalized-graphene sheets. J App Polym Sci 2012, 124:4663–4670. 12. Choudhary S, Mungse HP, Khatri OP: Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J Mater Chem 2012, 22:21032–21039.CrossRef 13. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC: Solution properties of graphite and graphene. J Am Chem Soc 2006, 128:7720–7721.CrossRef

14. Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST: Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 2010, 22:892–896.CrossRef 15. Liang Y, Wu D, Feng X, Müllen K: Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater 2009, 21:1679–1683.CrossRef 16. Mei Q, Zhang K, Guan G, Liu B, Wang S, Zhang Z: Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem Commun 2010, 46:7319–7321.CrossRef 17. Tessonnier J-P, Barteau Tyrosine-protein kinase BLK MA: Dispersion of alkyl-chain-functionalized reduced graphene oxide sheets in nonpolar solvents. Langmuir 2012, 28:6691–6697.CrossRef

18. Jang J, Pham VH, Hur SH, Chung JS: Dispersibility of reduced alkylamine-functionalized graphene oxides in organic solvents. J Colloid Interface Sci 2014, 424:62–66.CrossRef 19. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH: Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym Test 2012, 31:31–38.CrossRef 20. Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW: Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 2011, 52:1837–1846.CrossRef 21. Liu J, Wang Y, Xu S, Sun DD: Synthesis of graphene soluble in organic solvents by simultaneous ether-functionalization with octadecane groups and reduction. Mater Lett 2010, 64:2236–2239.CrossRef 22. Jabbari E, Peppas NA: Use of ATR-FTIR to study interdiffusion in polystyrene and poly(vinyl methyl ether).

There may be small differences in the age- and sex-specific BMD i

There may be small differences in the age- and sex-specific BMD in different European countries as well as within countries. If so, these differences in BMD are relatively small and insufficient to account for Belinostat purchase the observed differences in fracture rates (see below). Risk factors for fracture BMD Assessment of BMD has provided a crucial determinant of fracture risk, and many guidelines have used BMD thresholds to determine whether treatments should be recommended. Intervention thresholds

have ranged from T-scores of −3 SD to −1.5 SD depending on the clinical context, the country or health economic factors [1, 47–51]. The use of bone mass CHIR98014 measurements for prognosis depends upon accuracy. Accuracy in this context is the ability of the measurement to predict fracture. In general, all densitometric techniques have high specificity but low sensitivity which varies with the cutoff chosen to designate high risk. At the age of 50 years, for example, the proportion of women with osteoporosis who will fracture their hip, spine, forearm or proximal humerus in the next 10 years (i.e. positive predictive value) is approximately 45 %. Despite this, the overall detection rate for these

fractures (sensitivity) is low, AZD2014 and 96 % of fractures at the spine, hip, forearm or proximal humerus will occur in women without osteoporosis [52]. The low sensitivity is one of the reasons why widespread population-based screening with BMD is not widely recommended in women at the time Pyruvate dehydrogenase of the menopause [7]. Many cross-sectional and prospective population studies indicate that the risk for fracture increases by a factor of 1.5 to 3.0 for each standard deviation decrease in bone mineral density [31]. The ability of bone mineral density to predict fracture is comparable to the use of blood pressure to predict stroke and substantially better than serum cholesterol to predict myocardial infarction [7]. There are,

however, significant differences in the performance of different techniques at different skeletal sites. In addition, the performance depends on the type of fracture that one wishes to predict [31, 53]. For example, BMD assessments by DXA to predict hip fracture are more predictive when measurements are made at the hip rather than at the spine or forearm (Table 4). For the prediction of hip fracture, the gradient of risk provided by hip BMD in a meta-analysis is 2.6 [31]. In other words, the fracture risk increases 2.6-fold for each SD decrease in hip BMD. Thus, an individual with a Z-score of −3 at the hip would have a 2.63 or greater than 15-fold higher risk than an individual of the same age with a Z-score of 0. Where the intention is to predict any osteoporotic fracture, the commonly used techniques are comparable: The risk of fracture increases approximately 1.

(DOCX 39 KB) References 1 JECFA Joint Expert Committee on Food

(DOCX 39 KB) References 1. JECFA. Joint Expert Committee on Food Additives: Evaluation of certain food additives and contaminants. Forty-sixth Report of the Joint FAO/WHO Expert Committee on Food Additives; 1996. WHO Technical Report Series 868. Geneva: World Health Organization; 1997. 2. Council For Agriculture Science this website And Technology (Cast: Mycotoxins: Risks in Plant, Animal and Human Systems. Ames, Iowa: Council for Agricultural Science and Technology; 2003. 3. Holzapfel CW: The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium

cyclopium Westling. selleck compound Tetrahedron 1968, 24:2101–2119.PubMedCrossRef 4. Rao BL, Husain A: Presence of cyclopiazonic acid in kodo millet ( Paspalum scrobiculation ) causing “kodua poisoning” in man and its production by associated fungi. Mycopathologia 1985, 89:177–180.CrossRef 5. Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N: A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi isolated from Portuguese almonds. Int J Food Micro 2009, 129:187–193.CrossRef 6. Samson RA, Varga J: What is a species in Aspergillus ? Med Mycol 2009,47(Suppl 1):13–20.CrossRef 7. Varga J, Frisvad JC, Samson RA: Two new aflatoxin producing species, and an overview of Aspergillus section Flavi . Stud Mycol 2011, 69:57–80.PubMedCentralPubMedCrossRef 8.

Gonçalves SS, Stchigel AM, Cano JF, Godoy-Martinez PC, Colombo AL, Guarro J: Aspergillus novoparasiticus : a new clinical Pyruvate dehydrogenase species of the section Flavi . Med Mycol 2012, 50:152–160.PubMedCrossRef 9. Soares C, Rodrigue P, Peterson SW, Lima N, Venâncio A: Three new species click here of Aspergillus section Flavi isolated from almonds and maize in Portugal. Mycologia 2012, 104:682–697.PubMedCrossRef 10. Taniwaki MH, Pitt JI,

Iamanaka BT, Sartori D, Copetti MV, Balajee A, Fungaro MH, Frisvad JC: Aspergillus bertholletius sp. nov. from Brazil nuts. PLoS One 2012,7(8):e42480.PubMedCentralPubMedCrossRef 11. Freitas-Silva O, Venancio A: Brazil nuts: Benefits and risks associated with the contamination by fungi and mycotoxins. Food Res Int 2011, 44:1434–1440.CrossRef 12. Reis TA, Oliveira TD, Baquião AC, Gonçalves SS, Zorzete P, Corrêa B: Mycobiota and mycotoxins in Brazil nut samples from different states of the Brazilian Amazon region. Int J Food Microbiol 2012, 159:61–68.PubMedCrossRef 13. Olsen M, Johnson P, Moller T, Paladino R, Lindblad M: Aspergillus nomius , an important aflatoxin producer in Brazil nuts? World Mycotoxin J 2008, 1:123–126.CrossRef 14. Baquião AC, Zorzete P, Reis TA, Assunção E, Vergueiro S, Correa B: Mycoflora and mycotoxins in field samples of Brazil nuts. Food Control 2012, 28:224–229.CrossRef 15. Gonçalves JS, Ferracin LM, Vieira MLC, Iamanaka BT, Taniwaki MH, Fungaro MHP: Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts. World J Microb Biot 2012, 28:1817–1825.CrossRef 16.

The former, which was later characterized as M bolleyi, was show

The former, which was later characterized as M. bolleyi, was shown to colonize living roots of reed without causing symptoms [18]. M. bolleyi has a broader host range, since it occurs as a minor root pathogen or an endophyte on other grasses as well [19–21]. M. phragmitis seems, however, to associate only with reed. To investigate coexistence, several approaches were used to search for evidence of niche partitioning between fungal https://www.selleckchem.com/products/wortmannin.html species sympatrically colonizing common

BV-6 chemical structure reed at Lake Constance. Presence-absence patterns were obtained using specific nested-PCR assays on a large set of field samples determining co-occurrences of the two Microdochium species and three additional, unrelated species. Furthermore, whether divergent growth temperature optima and resource partitioning could define the niches of the two closely related fungal species was examined. Methods Cultivation of fungi The fungal isolates used in this study (Additional file 1) originated from a previously published study [16]. Reference strains were purchased from CBS (Utrecht, Netherlands). All fungi were cultured on 2% malt agar (Biomalt, Villa Natura Gesundprodukte GmbH,

Kirn, Germany) at 20°C in the dark. Mycelial growth rates were determined using three culture replicates for each isolate and each temperature assayed. These ranged from 0°C to 30°C at intervals of 5°C. The mycelial radii for all cultures were determined after 14 d and additionally at 7 d for cultures incubated at temperatures ranging from 15°C to 30°C. Four individual isolates were analyzed for the 5/97-16

sequence type and five isolates for the 5/97-54 sequence type. Two reference strains were used for M. bolleyi selleck compound (CBS 137.64, CBS 172.63), and for M. nivale (CBS 110.94, CBS 320.78), respectively. Where applicable, data from strain replicates were combined and averaged. The data were analyzed statistically using the Dunnett test Niclosamide and multifactorial analysis of variance (MANOVA) that separately analyzed the growth rates of the isolates belonging to a species and their individual replicates (confidence limits at P < 0.05). Both tests were implemented using JMP software version 4.04 (SAS Institute, Cary, NC, USA). DNA extraction, PCR, sequencing and phylogenetic analysis DNA preparations from fungal mycelia were performed as described previously [22]. DNA preparations from reed tissues used for nested-PCR assays had been conducted earlier [17, 22] and were kept frozen at -20°C. Reed was harvested from Lake Constance (Germany) at four sites, described previously [16]. DNA sequences of the ITS (internal transcribed spacers) rDNA region from fungal isolates were produced, assembled, aligned and edited as previously described [22]. Phylogenetic analysis relied on the alignment of 37 sequences created using the software ClustalX ftp://​ftp.​ebi.​ac.​uk/​pub/​software/​mac/​clustalx and then manually adjusted. The alignment comprised the ITS1-box, the 5.8S rRNA gene, and the ITS2-box.